Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors.

Identifieur interne : 001342 ( Main/Exploration ); précédent : 001341; suivant : 001343

Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors.

Auteurs : Guillaume Saubeau [France] ; Sophie Goulitquer ; Dominique Barloy ; Philippe Potin ; Didier Andrivon ; Florence Val

Source :

RBID : pubmed:23479199

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

Potato and tobacco cells are differentially suited to study oxylipin pathway and elicitor-induced responses. Synthesis of oxylipins via the lipoxygenase (LOX) pathway provides plant cells with an important class of signaling molecules, related to plant stress responses and innate immunity. The aim of this study was to evaluate the induction of LOX pathway in tobacco and potato cells induced by a concentrated culture filtrate (CCF) from Phytophthora infestans and lipopolysaccharide (LPS) from Pectobacterium atrosepticum. Oxylipin activation was evaluated by the measurement of LOX activity and metabolite quantification. The basal levels of oxylipins and fatty acids showed that potato cells contained higher amounts of linoleic (LA), linolenic (LnA) and stearic acids than tobacco cells. The major oxylipin in potato cells, 9(S),10(S),11(R)-trihydroxy-12(Z),15(Z)-octadecadienoic acid (9,10,11-THOD), was not detected in tobacco cells. CCF induced a sharp increase of LA and LnA at 8 h in tobacco cells. In contrast they decreased in potato cells. In CCF-treated tobacco cells, colneleic acid increased up to 24 h, colnelenic acid and 9(S)-hydroxyoctadecatrienoic acid (9(S)-HOT) increased up to 16 h. In potato cells, only colneleic acid increased slightly until 16 h. A differential induction of LOX activity was measured in both cells treated by CCF. With LPS treatment, only 9,10,11-THOD accumulation was significantly induced at 16 h in potato cells. Fatty acids were constant in tobacco but decreased in potato cells over the studied time period. These results showed that the two elicitors were differently perceived by the two Solanaceae and that oxylipin pathway is strongly induced in tobacco with the CCF. They also revealed that elicitor-induced responses depended on both cell culture and elicitor.


DOI: 10.1007/s00299-012-1377-y
PubMed: 23479199


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors.</title>
<author>
<name sortKey="Saubeau, Guillaume" sort="Saubeau, Guillaume" uniqKey="Saubeau G" first="Guillaume" last="Saubeau">Guillaume Saubeau</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR1349 IGEPP, 35653, Le Rheu, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR1349 IGEPP, 35653, Le Rheu</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
<settlement type="city">Le Rheu</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Goulitquer, Sophie" sort="Goulitquer, Sophie" uniqKey="Goulitquer S" first="Sophie" last="Goulitquer">Sophie Goulitquer</name>
</author>
<author>
<name sortKey="Barloy, Dominique" sort="Barloy, Dominique" uniqKey="Barloy D" first="Dominique" last="Barloy">Dominique Barloy</name>
</author>
<author>
<name sortKey="Potin, Philippe" sort="Potin, Philippe" uniqKey="Potin P" first="Philippe" last="Potin">Philippe Potin</name>
</author>
<author>
<name sortKey="Andrivon, Didier" sort="Andrivon, Didier" uniqKey="Andrivon D" first="Didier" last="Andrivon">Didier Andrivon</name>
</author>
<author>
<name sortKey="Val, Florence" sort="Val, Florence" uniqKey="Val F" first="Florence" last="Val">Florence Val</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23479199</idno>
<idno type="pmid">23479199</idno>
<idno type="doi">10.1007/s00299-012-1377-y</idno>
<idno type="wicri:Area/Main/Corpus">001326</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001326</idno>
<idno type="wicri:Area/Main/Curation">001326</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001326</idno>
<idno type="wicri:Area/Main/Exploration">001326</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors.</title>
<author>
<name sortKey="Saubeau, Guillaume" sort="Saubeau, Guillaume" uniqKey="Saubeau G" first="Guillaume" last="Saubeau">Guillaume Saubeau</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR1349 IGEPP, 35653, Le Rheu, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR1349 IGEPP, 35653, Le Rheu</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
<settlement type="city">Le Rheu</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Goulitquer, Sophie" sort="Goulitquer, Sophie" uniqKey="Goulitquer S" first="Sophie" last="Goulitquer">Sophie Goulitquer</name>
</author>
<author>
<name sortKey="Barloy, Dominique" sort="Barloy, Dominique" uniqKey="Barloy D" first="Dominique" last="Barloy">Dominique Barloy</name>
</author>
<author>
<name sortKey="Potin, Philippe" sort="Potin, Philippe" uniqKey="Potin P" first="Philippe" last="Potin">Philippe Potin</name>
</author>
<author>
<name sortKey="Andrivon, Didier" sort="Andrivon, Didier" uniqKey="Andrivon D" first="Didier" last="Andrivon">Didier Andrivon</name>
</author>
<author>
<name sortKey="Val, Florence" sort="Val, Florence" uniqKey="Val F" first="Florence" last="Val">Florence Val</name>
</author>
</analytic>
<series>
<title level="j">Plant cell reports</title>
<idno type="eISSN">1432-203X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fatty Acids, Unsaturated (metabolism)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Linoleic Acid (metabolism)</term>
<term>Lipopolysaccharides (pharmacology)</term>
<term>Lipoxygenase (metabolism)</term>
<term>Oxylipins (metabolism)</term>
<term>Pectobacterium (metabolism)</term>
<term>Phenylalanine Ammonia-Lyase (metabolism)</term>
<term>Phytophthora infestans (metabolism)</term>
<term>Phytophthora infestans (pathogenicity)</term>
<term>Solanum tuberosum (cytology)</term>
<term>Solanum tuberosum (drug effects)</term>
<term>Solanum tuberosum (metabolism)</term>
<term>Solanum tuberosum (microbiology)</term>
<term>Tobacco (cytology)</term>
<term>Tobacco (drug effects)</term>
<term>Tobacco (metabolism)</term>
<term>Tobacco (microbiology)</term>
<term>alpha-Linolenic Acid (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide alpha-linolénique (métabolisme)</term>
<term>Acide linoléique (métabolisme)</term>
<term>Acides gras insaturés (métabolisme)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Lipopolysaccharides (pharmacologie)</term>
<term>Lipoxygenase (métabolisme)</term>
<term>Oxylipines (métabolisme)</term>
<term>Pectobacterium (métabolisme)</term>
<term>Phenylalanine ammonia-lyase (métabolisme)</term>
<term>Phytophthora infestans (métabolisme)</term>
<term>Phytophthora infestans (pathogénicité)</term>
<term>Solanum tuberosum (cytologie)</term>
<term>Solanum tuberosum (effets des médicaments et des substances chimiques)</term>
<term>Solanum tuberosum (microbiologie)</term>
<term>Solanum tuberosum (métabolisme)</term>
<term>Tabac (cytologie)</term>
<term>Tabac (effets des médicaments et des substances chimiques)</term>
<term>Tabac (microbiologie)</term>
<term>Tabac (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fatty Acids, Unsaturated</term>
<term>Linoleic Acid</term>
<term>Lipoxygenase</term>
<term>Oxylipins</term>
<term>Phenylalanine Ammonia-Lyase</term>
<term>alpha-Linolenic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Solanum tuberosum</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Solanum tuberosum</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Solanum tuberosum</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Solanum tuberosum</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Pectobacterium</term>
<term>Phytophthora infestans</term>
<term>Solanum tuberosum</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Solanum tuberosum</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Solanum tuberosum</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide alpha-linolénique</term>
<term>Acide linoléique</term>
<term>Acides gras insaturés</term>
<term>Lipoxygenase</term>
<term>Oxylipines</term>
<term>Pectobacterium</term>
<term>Phenylalanine ammonia-lyase</term>
<term>Phytophthora infestans</term>
<term>Solanum tuberosum</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>Potato and tobacco cells are differentially suited to study oxylipin pathway and elicitor-induced responses. Synthesis of oxylipins via the lipoxygenase (LOX) pathway provides plant cells with an important class of signaling molecules, related to plant stress responses and innate immunity. The aim of this study was to evaluate the induction of LOX pathway in tobacco and potato cells induced by a concentrated culture filtrate (CCF) from Phytophthora infestans and lipopolysaccharide (LPS) from Pectobacterium atrosepticum. Oxylipin activation was evaluated by the measurement of LOX activity and metabolite quantification. The basal levels of oxylipins and fatty acids showed that potato cells contained higher amounts of linoleic (LA), linolenic (LnA) and stearic acids than tobacco cells. The major oxylipin in potato cells, 9(S),10(S),11(R)-trihydroxy-12(Z),15(Z)-octadecadienoic acid (9,10,11-THOD), was not detected in tobacco cells. CCF induced a sharp increase of LA and LnA at 8 h in tobacco cells. In contrast they decreased in potato cells. In CCF-treated tobacco cells, colneleic acid increased up to 24 h, colnelenic acid and 9(S)-hydroxyoctadecatrienoic acid (9(S)-HOT) increased up to 16 h. In potato cells, only colneleic acid increased slightly until 16 h. A differential induction of LOX activity was measured in both cells treated by CCF. With LPS treatment, only 9,10,11-THOD accumulation was significantly induced at 16 h in potato cells. Fatty acids were constant in tobacco but decreased in potato cells over the studied time period. These results showed that the two elicitors were differently perceived by the two Solanaceae and that oxylipin pathway is strongly induced in tobacco with the CCF. They also revealed that elicitor-induced responses depended on both cell culture and elicitor.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23479199</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-203X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant cell reports</Title>
<ISOAbbreviation>Plant Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors.</ArticleTitle>
<Pagination>
<MedlinePgn>579-89</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00299-012-1377-y</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="CONCLUSIONS">Potato and tobacco cells are differentially suited to study oxylipin pathway and elicitor-induced responses. Synthesis of oxylipins via the lipoxygenase (LOX) pathway provides plant cells with an important class of signaling molecules, related to plant stress responses and innate immunity. The aim of this study was to evaluate the induction of LOX pathway in tobacco and potato cells induced by a concentrated culture filtrate (CCF) from Phytophthora infestans and lipopolysaccharide (LPS) from Pectobacterium atrosepticum. Oxylipin activation was evaluated by the measurement of LOX activity and metabolite quantification. The basal levels of oxylipins and fatty acids showed that potato cells contained higher amounts of linoleic (LA), linolenic (LnA) and stearic acids than tobacco cells. The major oxylipin in potato cells, 9(S),10(S),11(R)-trihydroxy-12(Z),15(Z)-octadecadienoic acid (9,10,11-THOD), was not detected in tobacco cells. CCF induced a sharp increase of LA and LnA at 8 h in tobacco cells. In contrast they decreased in potato cells. In CCF-treated tobacco cells, colneleic acid increased up to 24 h, colnelenic acid and 9(S)-hydroxyoctadecatrienoic acid (9(S)-HOT) increased up to 16 h. In potato cells, only colneleic acid increased slightly until 16 h. A differential induction of LOX activity was measured in both cells treated by CCF. With LPS treatment, only 9,10,11-THOD accumulation was significantly induced at 16 h in potato cells. Fatty acids were constant in tobacco but decreased in potato cells over the studied time period. These results showed that the two elicitors were differently perceived by the two Solanaceae and that oxylipin pathway is strongly induced in tobacco with the CCF. They also revealed that elicitor-induced responses depended on both cell culture and elicitor.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saubeau</LastName>
<ForeName>Guillaume</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR1349 IGEPP, 35653, Le Rheu, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goulitquer</LastName>
<ForeName>Sophie</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barloy</LastName>
<ForeName>Dominique</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Potin</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Andrivon</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Val</LastName>
<ForeName>Florence</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Plant Cell Rep</MedlineTA>
<NlmUniqueID>9880970</NlmUniqueID>
<ISSNLinking>0721-7714</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005231">Fatty Acids, Unsaturated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008070">Lipopolysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0RBV727H71</RegistryNumber>
<NameOfSubstance UI="D017962">alpha-Linolenic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52761-34-9</RegistryNumber>
<NameOfSubstance UI="C002946">colneleic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9KJL21T0QJ</RegistryNumber>
<NameOfSubstance UI="D019787">Linoleic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.11.12</RegistryNumber>
<NameOfSubstance UI="D008084">Lipoxygenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.3.1.24</RegistryNumber>
<NameOfSubstance UI="D010650">Phenylalanine Ammonia-Lyase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005231" MajorTopicYN="N">Fatty Acids, Unsaturated</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019787" MajorTopicYN="N">Linoleic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008070" MajorTopicYN="N">Lipopolysaccharides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008084" MajorTopicYN="N">Lipoxygenase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044043" MajorTopicYN="N">Pectobacterium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010650" MajorTopicYN="N">Phenylalanine Ammonia-Lyase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017962" MajorTopicYN="N">alpha-Linolenic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>12</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23479199</ArticleId>
<ArticleId IdType="doi">10.1007/s00299-012-1377-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Mar 2;276(9):6267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11085991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):293-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Jul;19(7):711-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16838784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008 Jan;165(1):83-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2008 Jun;98(6):653-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Dec 11;282(5396):2085-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2004 Aug;45(8):1446-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15145985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Nov;228(6):977-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Nov 2;507(3):371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11696374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Jan;52(354):11-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11181709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2011 Mar;49(3):321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21296584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):378-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Apr;48(4):225-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20137961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1971 Feb;121(3):379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5154523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Sep;28(9):880-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16937346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jan;152(1):96-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19897603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Mar;19(3):831-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Dec;40(6):931-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15584958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Sep;8(5):636-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16755465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1968 Mar;43(3):365-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16656772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1902-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21853112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 1999 Dec;56(11-12):1020-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11212320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Mar;11(3):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Aug;23(4):441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10972870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 Feb;163(3):348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16386332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Aug;69(11):2127-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2010 Feb;37(2):717-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19449126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Aug;51(349):1363-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10944149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 17;274(51):36446-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10593941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Jan;13(1):95-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(5):749-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12472690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Jun;47(6):511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19167233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 May;1771(5):565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17428728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Jul;111(3):797-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Nov;1761(11):1246-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 19;278(51):51796-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jan;9(1):21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 Sep 5;1584(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 Apr 15;184(1):183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1567426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Aug;67(3):447-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21481031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):1121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Jul 31;1393(1):193-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9714802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 26;278(52):52834-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Feb 26;1530(2-3):236-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11239826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Sep;70(13-14):1504-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lipids. 2011 Feb;46(2):201-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21161604</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Région Bretagne</li>
</region>
<settlement>
<li>Le Rheu</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Andrivon, Didier" sort="Andrivon, Didier" uniqKey="Andrivon D" first="Didier" last="Andrivon">Didier Andrivon</name>
<name sortKey="Barloy, Dominique" sort="Barloy, Dominique" uniqKey="Barloy D" first="Dominique" last="Barloy">Dominique Barloy</name>
<name sortKey="Goulitquer, Sophie" sort="Goulitquer, Sophie" uniqKey="Goulitquer S" first="Sophie" last="Goulitquer">Sophie Goulitquer</name>
<name sortKey="Potin, Philippe" sort="Potin, Philippe" uniqKey="Potin P" first="Philippe" last="Potin">Philippe Potin</name>
<name sortKey="Val, Florence" sort="Val, Florence" uniqKey="Val F" first="Florence" last="Val">Florence Val</name>
</noCountry>
<country name="France">
<region name="Région Bretagne">
<name sortKey="Saubeau, Guillaume" sort="Saubeau, Guillaume" uniqKey="Saubeau G" first="Guillaume" last="Saubeau">Guillaume Saubeau</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001342 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001342 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23479199
   |texte=   Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23479199" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024